Correl Mat¶
Functions used for the generation of weighted correlation matrices
ExtractTS¶
-
class
neuropype_graph.nodes.correl_mat.
ExtractTS
(from_file=None, **inputs)¶ Description: Extract time series from a labelled mask in Nifti Format where all ROIs have the same index
Inputs:
- indexed_rois_file:
- type = File, exists=True, desc=’indexed mask where all voxels belonging to the same ROI have the same value (! starting from 1)’, mandatory=True
- file_4D:
- type = File, exists=True, desc=‘4D volume to be extracted’, mandatory=True
- coord_rois_file:
- type = File, desc=’ROI coordinates’
- min_BOLD_intensity:
- type = Float, default = 50.0, desc=’BOLD signal below this value will be set to zero’,usedefault = True
- percent_signal:
- type = Float, default = 0.5, desc = “Percent of voxels in a ROI with signal higher that min_BOLD_intensity to keep this ROI”,usedefault = True
- plot_fig:
- type = Bool, defaults = False, desc = “Plotting mean signal or not”, usedefault = True)
Outputs:
- mean_masked_ts_file:
- type = File, exists=True, desc=”mean ts in .npy (pickle format)”
- subj_coord_rois_file:
- type = File, exists=True, desc=”ROI coordinates retained for the subject”
IntersectMask¶
-
class
neuropype_graph.nodes.correl_mat.
IntersectMask
(from_file=None, **inputs)¶ Description:
Keep only values of indexed mask where filter_mask is present. Optionnally, keep only ijk_coords, MNI_coords and labels that are kept in filtered mask
Inputs:
- indexed_rois_file:
- type = File, exists=True, desc=’nii file with indexed mask where all voxels belonging to the same ROI have the same value (! starting from 0)’, mandatory=True
- filter_mask_file:
- type = File, exists=True, desc=’nii file with (binary) mask - e.g. grey matter mask’, mandatory=True
- coords_rois_file:
- type = File, desc=’ijk coords txt file’
- labels_rois_file:
- type = File, desc=’labels txt file’
- MNI_coords_rois_file:
- type = File, desc=’MNI coords txt file’
- filter_thr:
- type = Float, default = 0.99, usedefault = True, desc=’Value to threshold filter_mask’
Outputs:
- filtered_indexed_rois_file:
- type = File, exists=True, desc=’nii file with indexed mask where all voxels belonging to the same ROI have the same value (! starting from 0)’
- filtered_coords_rois_file:
- type = File, exists=False, desc=’filtered ijk coords txt file’
- filtered_labels_rois_file:
- type = File, exists=False, desc=’filtered labels txt file’
- filtered_MNI_coords_rois_file:
- type = File, exists=False, desc=’filtered MNI coords txt file’
ExtractMeanTS¶
-
class
neuropype_graph.nodes.correl_mat.
ExtractMeanTS
(from_file=None, **inputs)¶ Description:
Extract mean time series from a labelled mask in Nifti Format where the voxels of interest have values 1 (mask_file), or from a percent mask (filter_mask_file) with values higher than threshold (filter_thr)
Inputs:
- file_4D:
- type = File, exists=True, desc=‘4D volume to be extracted’, mandatory=True
- mask_file:
- type = File, xor = [‘filter_mask_file’], exists=True, desc=’mask file where all voxels belonging to the selected region have index 1’, mandatory=True
- filter_mask_file:
- type = File, xor = [‘mask_file’],requires = [‘filter_thr’], exists=True, desc=’mask file where all voxels belonging to the selected region have values higher than threshold’, mandatory=True
- filter_thr:
- type = Float, default = 0.99, usedefault = True, desc=’Value to threshold filter_mask’
- suffix:
- type = String, default = “suf”,desc=’Suffix added to describe the extracted time series’,mandatory=False,usedefault = True
- plot_fig:
- type = Bool, default = False, desc = “Plotting mean signal or not”, usedefault = True
Outputs:
- mean_masked_ts_file:
- type = File, exists=True, desc=”mean ts in .npy format”
ConcatTS¶
-
class
neuropype_graph.nodes.correl_mat.
ConcatTS
(from_file=None, **inputs)¶ Description:
Concatenate time series
Inputs:
- all_ts_file:
- type = File, exists=True, desc=’npy file containing all ts to be concatenated’, mandatory=True
Outputs:
- concatenated_ts_file:
- type = File, exists=True, desc=”ts after concatenation”
Comments:
Not sure where it is used
MergeTS¶
-
class
neuropype_graph.nodes.correl_mat.
MergeTS
(from_file=None, **inputs)¶ Description:
Merges time series from several files
Inputs:
- all_ts_files:
- type = List of Files, exists=True, desc=’list of npy files containing all ts to be merged’, mandatory=True
Outputs:
- merged_ts_file:
- type = File, exists=True, desc=”ts after merge”
Comments:
Used for multiple-session merges
SeparateTS¶
-
class
neuropype_graph.nodes.correl_mat.
SeparateTS
(from_file=None, **inputs)¶ Description:
Save all time series from a npy file to several single time series npy files
Inputs:
- all_ts_file:
- type = File, exists=True, desc=’npy file containing all ts to be concatenated’, mandatory=True
Outputs:
- separated_ts_files
- type = List of Files, exists=True, desc=”ts files after separation”
Comments:
Not sure where it is used...
FindSPMRegressor¶
-
class
neuropype_graph.nodes.correl_mat.
FindSPMRegressor
(from_file=None, **inputs)¶ Description:
Find regressor in SPM.mat and save it as timeseries txt file
Inputs:
- spm_mat_file:
- type = File, exists=True, desc=’SPM design matrix after generate model’, mandatory=True
- regressor_name:
- type = String, exists=True, desc=’Name of the regressor in SPM design matrix to be looked after’, mandatory=True
- run_index:
- type = Int, default = 1 , usedefault = True , desc = “Run (session) index, default is one in SPM”
- only_positive_values:
- type = Bool, default = True, usedefault = True , desc = “Return only positive values of the regressor (negative values are set to 0); Otherwise return all values”
- concatenated_runs:
type = Bool, default = False , usedefault = True , desc = “If concatenate runs, need to search for the length of the session”
Deprecation: #concatenate_runs = traits.Int(1, usedefault = True , desc = “If concatenate runs, how many runs there is (needed to return the part of the regressors that is active for the session only)”)
Outputs:
- regressor_file:
- type = File,exists=True, desc=”txt file containing the regressor”
ComputeConfCorMat¶
-
class
neuropype_graph.nodes.correl_mat.
ComputeConfCorMat
(from_file=None, **inputs)¶ Description:
Compute correlation between time series, with a given confidence interval. If weight_file is specified, used for weighted correlation
Inputs:
- ts_file:
- type = File, exists=True, desc=’Numpy files with time series to be correlated’,mandatory=True
- transpose_ts:
- type = Bool, default=True,usedefault = True,desc = ‘whether to transpose timeseries’, mandatory = True
- weight_file:
- type = File, exists=True, desc=’Weight of the correlation (normally, condition regressor file)’, mandatory=False
- conf_interval_prob:
- type = Float, default = 0.05, usedefault = True, desc=’Confidence interval’, mandatory=True
- plot_mat:
- type = Bool, default = True, usedefault = True, desc=’Confidence interval’, mandatory=False
- labels_file:
- type = File, exists=True, desc=’Name of the nodes (used only if plot = true)’, mandatory=False
Outputs:
- cor_mat_file:
- type = File, exists=True, desc=”npy file containing the R values of correlation”
- Z_cor_mat_file:
- type = File, exists=True, desc=”npy file containing the Z-values (after Fisher’s R-to-Z trasformation) of correlation”
- conf_cor_mat_file:
- type = File, exists=True, desc=”npy file containing the confidence interval around R values”